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ABSTRACT: Selective adsorption of ligands on nanocrystal
surfaces can affect oxidative etching. Here, we report the etching
of palladium nanocrystals imaged using liquid cell transmission
electron microscopy. The adsorption of surface ligands (i.e., iron
acetylacetonate and its derivatives) and their role as inhibitor
molecules on the etching process were investigated. Our
observations revealed that the etching was dominated by the
interplay between palladium facets and ligands and that the etching
exhibited different pathways at different concentrations of ligands.
At a low concentration of iron acetylacetonate (0.1 mM), rapid
etching primarily at {100} facets led to a concave structure. At a
high concentration (1.0 mM), the etch rate was decreased owing
to a protective film of iron acetylacetonate on the {100} facets and
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a round nanoparticle was achieved. Ab initio calculations showed that the differences in adsorption energy of inhibitor molecules on

palladium facets were responsible for the etching behavior.
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he adsorption of ligand molecules on nanocrystal surfaces

strongly influences the nanocrystal behavior in a variety
range of applications, including catalysis,' > self-assembly,*°
synthesis,’ " and etching.'’”"* Oxidative etching has emerged
as a feasible approach to manipulate the shape of nanocryst-
als.’® During the etching reactions, organic molecules or ions
can be adsorbed on specific facets,'™"® which lead to facet-
dependent etching and formation of nanocrystals with various
morphologies.lg_22 However, many specifics, such as the
binding location of ligands and their effect on nanocrystal
shape transformations, still warrant experimental observation.

The recent developments in liquid cell transmission electron
microscopy (TEM)**™>” have enabled direct imaging of
chemical reactions in liquids, including nucleation,”* >’
growth,”"*” self-assembly of nanocrystals,””** and dynamic
phenomena at electrode—electrolyte interfaces.””*° Liquid cell
TEM has been used to address some scientific issues regarding
liga.nds,37_40 for example, surface ligands can impact the
etching behavior,"" while the adsorption sites of ligands on
specific nanoparticle facets as well as the correlated etching
dynamics has not been revealed.

Herein, we investigated the etching of ~20 nm palladium
(Pd) nanocrystals in an aqueous solution of FeCl; and
iron(III) acetylacetonate (Fe(acac);) Typically, transition
metal acetylacetonate is a promising candidate to inhibit
etching,*~** and consequently, Fe(acac); was used as the
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inhibitor molecule to control the etching of Pd nanocrystals.
By taking advantage of in situ liquid cell TEM, we directly
observed the etching of Pd nanocrystals by tracking the facet
evolution. It is worth noting that since Pd nanocrystals are
widely used in catalysis*>*® and biosensing,"” the stability of
Pd nanocrystals in various environments is of great
interest."* ™" An understanding of the etching behavior of
Pd nanocrystals described in this study may facilitate further
practical applications.

To prepare a liquid cell sample for our in situ TEM
experiment, a droplet of ~2 uL reaction solution containing Pd
nanocrystals, FeCl,, and Fe(acac); was encapsulated between
two carbon films (Figure 1A, also see Methods). Note that the
free Fe3* from FeCl; acted as the primary etchant®' while the
iron bonded in Fe(acac); served as a coordination complex.
Upon evaporating excess liquid, the liquid cell was sealed and
subsequently transferred into the microscope for real-time
imaging. We found that the Pd nanocrystals were uniformly
distributed in the liquid cell (Figure 1B). The Pd nanocrystals
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Amorphous carbon

Figure 1. Etching of Pd nanocrystals at different Fe(acac); concentrations. (A) A schematic setup of in situ liquid cell TEM experiment with Pd
nanocrystals and Fe(acac); in water. (B) A low-magnification TEM image of the Pd nanocrystals distributed in the liquid cell. (C) A single-
crystalline Pd nanocrystal. (D) A high-resolution TEM image of a Pd nanocrystal. The (100) and (110) facets can be distinguished. (E) Rapid
etching of Pd nanocrystals at 0.1 mM Fe(acac);. (F) Mitigated etching of Pd nanocrystals in the 1 mM Fe(acac); aqueous solution.

had an average size of ~20 nm and exhibited a truncated cubic
shape (Figure 1C, also see Figure S1) with exposed (100),
(110), and (111) facets (Figure 1D). The three-dimensional
view of the Pd nanocrystal was observed when it was rotating
in the liquid cell (Figure S2).

Different etching phenomena were noticed at two different
Fe(acac); concentrations. At 0.1 mM Fe(acac);, a rapid
etching of Pd nanocrystals was observed, as shown in Figure
1E. At this low concentration of Fe(acac)s;, most of the Pd
nanocrystals showed etch completion after 12 s. However, the
etching was significantly suppressed under a high Fe(acac),
(1.0 mM); no obvious shape change or little size change was
observed after 20 s (Figure 1F). In both cases, some electron
radiolysis species such as O, and H,0, can promote the initial
etching.”” It seems that there was moderate etching at the
corners of Pd nanocrystals at the initial stage (“0 s” refers to
the initial imaging time). Note that the electron dose rate
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(~200 e-A"*s7") was controlled in the same manner in Figure
1E,F to incorporate the same electron beam effect in both
concentrations. These results indicate that Fe(acac); molecules
readily impacted the etching of Pd nanocrystals, leading to
different etch rates and etching modes.

The individual Pd nanocrystal was traced with high
resolution to quantify the nanocrystal shape evolution during
etching. At the low Fe(acac); concentration (0.1 mM), the
etching reactions initiated at the {100} facets and proceeded
rapidly along the (100) directions (Figure 2A). In this
scenario, the fast etching along the (100) directions led to
transforming the truncated Pd nanocube into a concave
nanoparticle within 10 s. Meanwhile, we observed moderate
etching at the corners. With continuous etching primarily
along the (100) directions, the concave cube split into small
fragments. Most Pd nanocrystals were dissolved after 16 s.
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Figure 2. Rapid etching of a Pd nanocrystal at 0.1 mM Fe(acac);. (A) Time series of in situ TEM images (Supplementary Video 1) and
corresponding schematics showing the shape evolution throughout the etching process. The {100} facets were highlighted in blue. (B) Time-
domain contour plots of the Pd nanocrystal. Contour lines are spaced in time by 1 s. The color of the curves represents the local curvature. (C)
Projected area and etch rate of Pd nanocrystal as a function of time. (D) The average center-to-face distance as a function of time. The average
etching rates were calculated based on different time ranges. Error bars, standard deviation from multiple measurements.

To better understand the spatiotemporal details of the
reaction, we constructed time-domain contour plots showing
the dynamic shape evolution of the Pd nanocrystal, colored
based on the local curvature. As shown in Figure 2B for the
case of the low concentrated Fe(acac); (0.1 mM), it reveals a
unique etching mode dominated by the {100} facets with low
curvature values. This is different from the commonly reported
cases without inhibitor molecules™ in which etching initiates
in the location with high curvature due to the high surface
energy at the low coordinated sites.”**>° Our results can be
attributed to the capping effect of inhibitor molecules on
certain facets so that the selective oxidation of {100} facets
leads to the formation of a concave structure. We classified the
etching of the Pd nanocrystal into three stages based on the
projected area etch rate, as shown in Figure 2C. Etching in the
initial period was mild at the rate of ~6 nm”/s, followed by a
steady etching period at ~18 nm?/s through etching of the
{100} facets. The accelerated etching after ~4 s can be
attributed to the increase of specific surface area with more
low-coordinated atoms exposed because of the formation of
concave structure. Finally, an acceleration period was noticed
at a rate of ~22 nm?*/s once the concave structure collapsed.
Etching of the Pd nanocrystal exhibited symmetrical character-
istics concerning the evolution of center-to-face distance of the
equivalent facets, such as the {100} and {110}, is similar
(Figure 2D). This is governed by the geometry of Pd
nanocube,”® and it is consistent with the shape evolution as
shown in Figure 2B.

At high Fe(acac); concentration (1.0 mM), the etching of
Pd was significantly mitigated by the presence of the ligands at
the nanocrystal surfaces. Sequential TEM images and the
contour maps show that the truncated Pd nanocube evolved
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into nearly a spherical nanoparticle after 8 s of etching (Figure
3A,B). A crystalline thin film on the nanocrystal surface was
observed. The thin film hindered the etching of the Pd
nanocrystal, especially the {100} facets. This layered structure
was further determined to be Fe(acac); based on the crystal
structure imaged by high-resolution TEM and chemical EDS
mapping (see more details in Figure 4 and Figure SS). In
contrast to the initial etching at low Fe(acac); concentration
where etching starts from {100} facets, the {110} and {111}
facets are active and etched in this case since they are mostly
exposed to the etchant solution without the protecting film.
Thus, the etching leads to the transition of the truncated Pd
nanocube into a nearly spherical shape.

The etching kinetics was revealed in Figure 3C by showing
that the projected area of Pd nanocrystal declined from 272 to
215 nm?* while its circularity increased to 0.99 as a function of
time. We calculated the circularity (C) using the formula: C =
4-7-(area/perimeter”). The rise in circularity represents the Pd
nanocrystal transformation from highly faceted to almost a
sphere. Figure 3D indicates that the etching was symmetric in
1.0 mM Fe(acac); and that the etch rates at different facets
were almost the same and equal to 0.16 nm/s.

We observed that at high electron dose rate (~2700 e-A™>
s7"), the surface protective layer of Fe(acac); crystal can be
damaged resulting in an etching mode that was similar to the
mode of the low concentration Fe(acac), (Figure S3). We also
discovered that the etch rate was faster than if the protective
layer remained intact by a factor of 2 from ~0.9 to ~3 nm?/s,
at a higher electron dose rate of ~2700 e-A™*s™" (Figure S4).

High-resolution images of the Fe(acac); crystalline film on
the Pd nanocrystals in a concentrated Fe(acac), solution (1.0
mM) are shown in Figure 4A,B. The Fe(acac); film shows a
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Figure 3. Mitigated etching of a Pd nanocrystal at 1.0 mM Fe(acac);. (A) Time series of in situ TEM images (Supplementary Video 2) with
corresponding schematics during the shape evolution. The {100} facets are highlighted in blue. (B) Time-domain contour plots of the Pd
nanocrystal. Contour lines are spaced in time by 2 s. The color of the curves shows the local curvature. (C) Projected area and circularity of the Pd
nanocrystal as a function of time. (D) The average center-to-face distance as a function of time, extracted from contour plots in (B). The average
etching rates were calculated based on different time ranges. Error bars, standard deviation from multiple measurements.

layered structure with a 0.85 nm spacing, which corresponds to
the (100) spacing of the Fe(acac), crystal (Figure 4C). Our
characterization of the Fe(acac); film is consistent with the
reported Fe(acac), crystal structure®” in which the Fe(acac),
molecular layers are assembled by van der Waals force. The
chemical maps of the film derived from STEM EDS data can
be found in Figure SS. The Fe(acac), film is only located on
the {100} facets of Pd nanocrystals, which means localized
protection.

Fe(acac); can transform into free Fe>* and acetylacetonate
(acac) molecules and vice versa in an aqueous solution. We
employed UV—vis spectroscopy to identify the transition states
of Fe(acac); at different concentrations. In Figure 4D, the
peaks at ~450 and ~350 nm are assigned to the absorbance of
the coordination bonds between Fe and acac molecules, while
the peak at ~300 nm originates from the conjugated C=C
bonding.58 It shows that Fe(acac), remains the coordination
complex at 1.0 mM. However, Fe(acac); dissociates into acac
molecules at the concentration of 0.1 mM. This is consistent
with the poor solubility of Fe(acac); in water.”’

The state of Fe(acac), is dependent on its concentration. As
shown in Scheme 1A, at a high concentration (1 mM), the
coordinated Fe(acac); dominates while at a low concentration
(0.1 mM), the abundant species are acac molecules and
dissociated Fe®* ions. Accordingly, the free Fe®" ions can
enhance the etching of Pd through oxidation reactions. At high
concentration, the primary species in solution is Fe(acac),
molecules. The interaction between the Fe(acac); molecule
and Pd substrate is van der Waals force (Scheme 1B), which is
regarded as “physisorption”.”” We calculated the adsorption
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energies of Fe(acac); on different Pd facets based on density
functional theory (DFT). The results show that the differences
in the absorption energy are minimal (Table 1). We consider
that the Fe(acac); molecules prefer to attach to the {100}
facets because of the flat surface of the {100} facets and a good
lattice match.°” Both {100} facet of Fe(acac), crystal and the
{100} facet of Pd crystal share the orthogonal crystallographic
symmetry, and similar d-spacings, which may facilitate the
epitaxial growth of Fe(acac); on Pd facets (Figure S6). These
findings corroborate well with our experimental observations
shown in Figure 4A.

In the low concentration case, the acac molecules are the
primary products from Fe(acac); dissociation. DFT calcu-
lations involving structure optimization show that covalent
bonding between Pd adatom and the acac molecule is expected
(Scheme 1C, also see Figure S7). The calculations suggest that
the acac molecules are “chemisorbed” on the Pd surface in the
0.1 mM Fe(acac);.°" The adsorption energy of acac molecule
on Pd {110} is much lower than the adsorption energy on the
Pd {100} facets, which indicates the molecule interacts more
strongly with Pd atoms on the Pd {110} than on the {100}.
The adsorption of acac molecules stabilizes the surface Pd
{110} by forming the Pd(acac), complex, resulting in the
modified surface energy landscape.®”

Dissociation occurs at both concentrations with acac
molecules adsorbed on Pd facets. For example, at the high
concentration of Fe(acac);, the adsorption of Fe(acac); on the
Pd facets is a dynamic process accommodated by the
“physisorption” of Fe(acac); and “chemisorption” of acac
molecules simultaneously. This implies that the etching of Pd
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Figure 4. Distinct adsorption modes of Fe(acac); on Pd facets at different concentrations. (A) A TEM image of Fe(acac); molecular layers grown
on the Pd (100) facet in the liquid cell at 1.0 mM Fe(acac);. (B) A high-resolution TEM image of the layered Fe(acac); with a 0.85 nm interlayer
distance. (C) Atomic structure of Fe(acac); molecular crystal with consistent spacing. (D) UV—vis spectra of Fe(acac); in solution at different

concentrations. Fe(acac); dissociates into acac molecules at 0.1 mM.

Scheme 1. States of Fe(acac); at Different Concentrations”

A

High concentration
Fe(acac); 1.0 mM

H,0

Fe?*
Low concentration
Fe(acac); 0.1 mM

- o] o)
C
CH, H3C\(‘\/CH3
= 5
| AN
Pd {100} Pd {110}

%(A) Fe(acac); can transform into free Fe®* and acetylacetonate (acac) molecules and vice versa, depending on the concentration. (B) The growth
of Fe(acac); molecular layers on the {100} facet at 1.0 mM Fe(acac);. (C) Adsorption of the acac molecule on the {110} facet at 0.1 mM

Fe(acac);.

nanocrystals is mitigated by the physisorption of Fe(acac),
molecular film on the {100} facets and chemisorption of acac
small molecules on the {110} facets. However, the protection
by Fe(acac); film is more effective with a thick layer up to ~10
nm. It is also noted that at the high concentration of Fe(acac),
(1 mM), the mitigation of etching can be dominated by the
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physical film protection of the {100} facets at the very
beginning. If the Fe(acac), film is destroyed by electron beam
irradiation, the effects of acac molecules on the {110} facets
are more prominent.

In summary, the nanoscale etching behavior of the Pd
nanocrystals in the solution of Fe(acac); was tracked in real-

https://doi.org/10.1021/acs.nanolett.1c02104
Nano Lett. 2021, 21, 66406647


https://pubs.acs.org/doi/10.1021/acs.nanolett.1c02104?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c02104?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c02104?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c02104?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c02104?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c02104?fig=sch1&ref=pdf
pubs.acs.org/NanoLett?ref=pdf
https://doi.org/10.1021/acs.nanolett.1c02104?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Nano Letters

pubs.acs.org/NanoLett

Table 1. Adsorption Energy of Fe(acac); and acac on Pd
Facets

adsorption energy (eV)

facet Fe(acac), acac

(100) -0.12 —0.54
(110) ~020 072
(111) —0.14 -0.78

time through in situ liquid cell TEM. The facet-dependent etch
rate, and the shape evolution of Pd nanocrystals were
investigated at two different concentrations of Fe(acac);. At
a low concentration of Fe(acac); (0.1 mM), we found that the
etching originated on the Pd {100} facets, while at a high
concentration of Fe(acac); (1.0 mM), the initial etching
mostly occurs at the Pd {110} facets. At high concentrated
Fe(acac); (1.0 mM), an Fe(acac); protective film was formed
on the {100} facets, which significantly mitigated the etch rate
of the {100} facets from 16 to S nm?/s. In situ liquid cell TEM
observation facilitates an opportunity to decipher nanoscale
etching mechanisms and provides insights for designing
corrosion-resistant nanomaterials by manipulating the interplay
between inhibitor molecules and nanomaterials surfaces.

B METHODS

Palladium Nanocrystals. Pd nanocrystals were synthe-
sized according to the reported method.®> STEM imaging and
energy dispersive spectroscopy (EDS) elemental mapping of
the nanocrystals are shown in Figure S1. The concentration of
Pd nanocrystals in solution was ~40 pg/mL.

In Situ TEM. The TEM liquid cell was prepared by
encapsulating liquid between two carbon film-supported
copper grids. First, the Pd nanocrystal solution was dropcasted
on the carbon support on the first copper grid and air-dried for
~S$ min. Then, a droplet (~2 uL) of the reaction solution (0.1
M FeCl;, 0.2 mM HCl, and 0.1-1.0 mM Fe(acac);) was
loaded onto the carbon support of the second copper grid and
covered with the first grid. The liquid pockets were
encapsulated between two carbon films supported on Cu
grids due to van der Waals forces after evaporation of the
excess liquid solution. Afterward, the liquid cell was loaded
into an aberration-corrected transmission electron microscope
for imaging. The in situ liquid cell experiments were performed
on a Thermo Fisher Scientific ThemIS. The microscope was
operated at 300 keV with a Super-X energy dispersive X-ray
spectroscopy (EDS) detector, allowing for rapid chemical
identification. The videos were recorded on a Ceta CMOS
camera at S frames per second.

UV-—vis Spectroscopy. The liquid-state UV—vis absorb-
ance measurement was performed on Cary 5000 UV—vis-NIR
spectrometer from 180 to 1000 nm with a step size of 1 nm.

Density Functional Theory Calculations. DFT calcu-
lations were performed by the Vienna Ab Initio Simulation
Package (VASP).*%° The projector augmented wave (PAW)
method®”®” combined with the Perdew—Burke—Ernzerhof
exchange®® was used throughout the calculation. The plane-
wave basis energy cutoff was set at 450 eV for high precision,
and the related criteria were set 10™* eV for total energy
change and 0.02 eV/A for the force on each atom. The
Monkhorst—Pack grids in the Brillouin zone of the primitive
cells were set 5 X S X 1 for k-point sampling.

The Pd(100), Pd(110), and Pd(111) surfaces were all
modeled by periodically repeated unit cells. For example, the

Pd(100) surface was achieved by a 3 X 3 supercell. Each slab
consists of four Pd atomic layers; the bottom two layers were
fixed at their bulk lattice positions while the top two layers and
the adsorbates were allowed to relax fully. Successive slabs
were separated in the z-direction by a vacuum layer of 25 A.
The adsorption energy calculation formula is given below

Eads = Eadsorbate/surface - Eclean - Eadsorbate

Where Eadsorbate/surface) Eclean) and Eadsorbate represent the tOtal
energies of the adsorbate-slab, the clean slab, and the adsorbate
species, respectively.
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