Iron hydroxide is found in a wide range of contexts ranging from biominerals to steel corrosion, and it can transform to anhydrous oxide via releasing O₂ gas and H₂O. However, it is not well understood how gases transport through a crystal lattice. Here, we present in situ observation of the nucleation and migration of gas bubbles in iron (hydr)oxide using transmission electron microscopy. We create Pb-FeOOH model core–shell nanoparticles in a liquid cell. Under electron irradiation, iron hydroxide transforms to iron oxide, during which bubbles are generated, and they migrate through the shell to the nanoparticle surface. Geometric phase analysis of the shell lattice shows an inhomogeneous stain field at the bubbles. Our model suggests that the elastic interaction between the core and the bubble provides a driving force for bubble migration.

Significance

An understanding of gas bubble formation in a solid and the materials’ responses at the nanoscale is of technological importance. Tracking nanobubble evolution in a solid during chemical reactions involving a solid, a gas, and a liquid is rarely achieved. Here, we show a breakthrough in materials characterization by monitoring gas bubble nucleation and migration and the associated strain evolution in a lead–iron hydroxide core–shell nanoparticle during dehydration reaction using liquid cell transmission electron microscopy. We found strain coupling can be used to remove gas bubbles from nanostructures, which sheds light on strategies for nanomaterials engineering and novel materials synthetic routes.
and bubble propagation, as shown by the lighter contrast of the particle in its sequential images. Detailed analysis of the bubble formation at interfaces shows that the bubble changes its shape dynamically while it is pinned at the interface. The bubble growth trajectories show stepwise propagation characteristics (Fig. 1 E and F). It is clear that bubble enlargement involves the movement of a large number of atoms and the accumulation of vacancies and gas molecules. When the edge of the bubble reaches the nanoparticle surface, it disappears rapidly.

Strain Analysis. We map the local strain distribution within the nanoparticle using GPA on the sequential high-resolution TEM images acquired from the in situ experiments. A circular mask with certain radius is chosen in reciprocal space, such that its boundary is tangential to a Brillouin zone boundary, to maximize the resolution of GPA (20). We take the reference with the reciprocal lattice g vectors that best optimize the signal-to-noise ratio to calculate the geometric phase images $P_g(t)$. Any displacement of the lattice fringes with respect to the selected reference will result in a phase shift, i.e., a change in the value of the phase at the position corresponding to the displacement. The geometric phase obtained here is related to one-dimensional lattice displacement field $u_C(r)$ along the x direction, where $u_C(r) = -(1/2π) \cdot P_g(r) \cdot g$, and the g vector (111) is used for the displacement field determination in iron oxide. The x direction is normal to (111) plane of iron oxide (Fe$_3$O$_4$). The local distortion of the lattice around the core–shell interface, ε, is given by the gradient of the displacement field $(\varepsilon_x = \partial u_C(x)/\partial x)$, which indicates the corresponding strain field, ε_x, along the x direction. In Fig. 2, the GPA maps show that the shell lattice around the bubble has a tensile strain up to 1.5% ± 0.3% (discussions on the measurement error is provided in Supporting Information, and Figs. S3–S5). The tensile strain is observed before the bubble is visible, which suggests that H$_2$O and O$_2$ molecules accumulate in the local area (Fig. 2 and Fig. S3). The shell lattice around the core shows a compressive strain of about 1.0% ± 0.3%. During bubble growth, strain distribution around the bubble and the core changes, where the shell lattice maintains a positive strain around the bubble and a negative strain around the core (Movie S4). The same trend has been observed in other bubbles and the tensile strain likely results from the gas pressure inside the bubble (Supporting Information).

Bubble Migration Dynamics. The sequential high resolution TEM images in Fig. 3 show the shape evolution of two bubbles migrating through the shell, during which the shell experiences phase transition and shape deformation. In both cases, the shell maintains a single crystal lattice during bubble migration. As shown in Fig. 3 A and B, the surface configuration of the bubble changes with periodic enhancements in the isotropy of the shapes as bubble migrates inside the shell lattice. Here, isotropy (0–1.0) is measured by the ratio of the perimeter of the bubble to that of a circular object with the same size, with a value of 1.0 corresponding to a circular projected shape. Because the bubble can absorb nearby vacancies (or small bubble precipitates) during migration (21), possible concentration fluctuations of vacancies (bubble precipitates) in the bubble peripheral area may contribute to the shape changes. On the other hand, the accompanying strain close to the bubble could also facilitate the shape changes, as well as the deformation of the particle. The approximately circular average projected shape suggests that surface energy is approximately isotropic. When a bubble moves out of the lattice (Fig. 3 C–E), curvature of the bubble is gradually reduced until a perfect crystal lattice is restored. The high structural flexibility of nanoparticles has been observed in other liquid processing of materials (22). The process of bubble nucleation and migration out of the particle represents an effective mechanism for transport of gas species in a solid.

We measure the speed of bubble migration and its dependence on bubble sizes (Fig. 4). Trajectories of five bubbles

Fig. 1. Nucleation and growth dynamics of bubbles in lead–iron (hydr)oxide core–shell nanocrystal. (A) TEM image of the Pb–FeOOH(β–FeOOH) core–shell nanoparticle formed in a liquid cell. (B) Sequential images showing three growing bubbles at the core–shell interface and coalesce into one bubble later. (C) TEM image of the Pb–iron oxide core–shell nanoparticle resulted from the phase transition of the initial Pb–FeOOH(β–FeOOH) core–shell nanoparticle under the electron irradiation. (D) Sequential images showing a growing bubble at the core–shell interface. (E) Evolution of the growing nanobubble in D and the inset is the trajectory of contours of the bubble. (F) Change in area of the projected shape of the growing bubble with time.
with the diameters of 3.1, 4.0, 4.8, 5.4, and 5.8 nm (marked as 1, 2, 3, 4, and 5, respectively) show that all of the bubbles migrate directly from the core–shell interface to the particle surface. Each bubble has a near constant speed of migration and an average velocity of 2.56, 2.81, 1.90, 1.74, and 1.46 nm/s are observed. The larger bubbles move slightly slower than the smaller ones, however, the size effect on bubble migration is not significant. The speed of migration increases when a bubble moves near the crystal surface before it vanishes (captured for bubbles 4 and 5).

It is noted that the observed bubble migration in this work is different from those solely under high-temperature heating (23, 24), where Brownian motion occurs. In the present work, bubbles migrate with a nearly constant speed along one direction toward the surface. Based on the analysis of bubble evolution after coalescence, we propose that bubble migration is primarily mediated by the surface diffusion (Fig. S6; Supporting Information). The bubble migration observed here is also different from other reported irradiation-induced bubbles (or voids) by high-energy particles under high temperatures, such as neutrons, α-particles, and electrons (Tables S2 and S3), where bubbles (or voids) mostly stay inside the solid (25–27). It has been reported that the temperature rise in a liquid cell induced from the electron beam irradiation is small (only a few degrees or less) (28–30), therefore, we consider a critical factor, i.e., the elastic strain contribution to the observed bubble migration rather than the electron beam heating.

The Role of Elastic Energy in Bubble Migration. We use molecular statics calculations to investigate the nature of the elastic interaction between the core particle and bubbles. To explore the generic behavior, we created a core–shell particle with interactions between atoms described by a simple model interatomic potential for a metal. Uniform 1% compressive and tensile strain was applied to two cylindrical regions inside the particle to mimic the core and the bubble, respectively. Details of the modeling are available in Methods and Supporting Information. The long-range elastic strain generated by the core and the bubble is illustrated in Fig. 5A. The calculated elastic energy as a function of the core–bubble distance is plotted in Fig. 5B for the bubbles of different sizes. The elastic energy decreases with the core–bubble distance. Therefore, it is energetically favorable for the bubble to move out from the lattice. Without the core, the bubble located far away from the surface would not experience the driving force and would stay in the middle of the particle. Fig. S7 shows the evolution of the gradient of the elastic energy as the core–bubble distance increases. The elastic interaction energy decreases more rapidly as the bubble approaches the surface. Therefore, a bubble should accelerate near the surface as observed in the TEM experiment. The simulated results are in qualitative agreement with our in situ experimental observations.
The precursor solution was prepared by dissolving Pb(acetylacetonate)₂ and sized by electron beam initiation inside a liquid cell under an TEM in situ. (above 1,500 electrons electron beam current density. It is noted that a stronger electron beam current study of the kinetics of reaction and phase transition was under the same Fe(acetylacetonate)₂ (Pb:Fe molar ratio of 1:2) in triethylene glycol at extracted from the as recorded movie. All movies were acquired using a JEOL,

Conclusions

In conclusion, we have observed directly the bubble nucleation and migration in a lead–iron (hydr)oxide core–shell nanoparticle during dehydration reaction induced transformation from iron hydroxide to iron oxide. In situ high-resolution TEM imaging and the dynamic strain analysis allow us to map the strain distribution inside the nanoparticle as it undergoes chemical reactions involving solid, liquid, and gas phases. It is remarkable that bubbles can be pumped out of the solid, during which the single crystal lattice is maintained. Computational modeling illustrates that elastic strain interaction can drive a bubble to move out of the nanoparticle. These findings shed light on strategies of using strain to design defect-free anhydrous materials. The dynamics of bubble nucleation and migration in a crystal lattice may share some similarities with that of the bubbles generated in liquids (8, 17) or in biological systems (31). For instance, precipitation and growth of bubbles induced by gas diffusion and supersaturation have been found in those systems.

Methods

Pb-FeOOH (1) Core–Shell Nanoparticle Synthesis, Bubble Formation, and Movie Acquisition. All chemicals including Pb(acetylacetone)₂ (99%, Aldrich), Fe(acetylacetone)₂ (99%, Aldrich), Triethylene Glycol (99%, Aldrich) are used as received. The Pb-FeOOH (1) core–shell nanoparticles were synthesized by electron beam initiation inside a liquid cell under an TEM in situ. The precursor solution was prepared by dissolving Pb(acetylacetone)₂ and Fe(acetylacetone)₂ (Pb:Fe molar ratio of 1:2) in triethylene glycol at 60 °C. When the electron beam (200 kV; beam current density of about 500 electrons · Å⁻² · s⁻¹) passes through the silicon nitride window (3 × 50 μm) irradiating the solution, growth of nanoparticle in the liquid was initiated at low magnification under TEM. The bubble formation in a core–shell nanoparticle was initiated at an electron current density of 1,000 electrons · Å⁻² · s⁻¹. The study of the kinetics of reaction and phase transition was under the same electron beam current density. It is noted that a stronger electron beam current (above 1,500 electrons · Å⁻² · s⁻¹) introduces undesirable deformation and damage of the core–shell nanoparticle. The movie was recorded at a rate of five frames per second by the open-sourced software VirtualDub embedded in the DigitalMicrograph software. The as-recorded movie was compressed to reduce the file size (480 × 480 pixels), and the movie plays 4 times faster than the original movie. However, all image analysis was done on the original images extracted from the as recorded movie. All movies were acquired using a JEOL 2100 transmission electron microscope with a high-resolution pole piece and a LaB₆ filament. A Gatan Orius CCD camera was used for in situ imaging.

Image Analysis. We used ImageJ software to track the movements of each bubble. The image coloring was performed using the Photoshop software. All original images are available in Supporting Information. Further image processing such as image contrast analysis was done using Gatan Digital Micrograph. The stain analysis was conducted using geometric phase analysis.

Molecular Statics Calculations of Core–Bubble Interaction Through Elastic Field. Interaction between bubble and particle is investigated using molecular static simulations. We used Cu as a model material with atomic interactions described by embedded atom method (EAM) potential (32). It is noted that the details of interaction will not be accurate due to choice of model Cu system instead of real lead–iron oxide core–shell structure. However, the calculations can address a general question whether there is a driving force for bubble migration due to elastic interactions. First, we created a perfect crystal with [100] type crystallographic directions parallel to the x, y, and z directions of the simulation block. The dimensions of the block were 40.0 × 40.0 × 0.3615 nm³. Then a cylindrical region of 20.0 nm radius was cut out from the original crystal. To mimic the core particle, we uniformly scaled the x and y positions of the atoms inside the cylindrical region with radius 5 nm by 1%. Similarly, we modeled the bubble by applying 1% tensile strain to another cylindrical region located at different distances away from the core. After this core-shell structure with bubble was created the structure was statically relaxed to minimize the total energy using conjugate gradient method implemented in Large-scale

![Image](https://example.com/image.png)
Atomic/Molecular Massively Parallel Simulator (LAMMPS) (33). During the minimization, the positions of atoms belonging to the core particle remain fixed, and the atoms belonging to the bubble moved as a rigid body. To visualize the elastic field in the particle after the relaxation we colored the atoms according to local strain \(\varepsilon_{xx} = (\varepsilon_{xx} - \varepsilon_{0})/\varepsilon_{0}\) where \(\varepsilon_{0}\) is the local lattice parameter in the \(x\) direction and \(\varepsilon_{xx}\) is the stress-free parameter of perfect lattice. The \(x\) direction is parallel to the line connecting the centers of the core particle and the bubble.

ACKNOWLEDGMENTS. We acknowledge the facility support of National Center for Electron Microscopy of the Molecular Foundry at Lawrence Berkeley National Laboratory, which is funded by US Department of Energy (DOE) Basic Energy Sciences with Contract DE-AC02-05CH11231. T.F. was supported by a Miller Fellowship of University of California (UC), Berkeley. J.W. acknowledges the funding support of National Research Foundation of Singapore under Project NRF-CRP5-2009-04. H.Z. acknowledges the travel support of SinBeRise BEARS UC Berkeley. H.Z. thanks the support of DOE Office of Science Early Career Research Program.