Anomalously high electronic thermal conductivity and Lorenz ratio in Bi$_2$Te$_3$ nanoribbons far from the bipolar condition

Cite as: Appl. Phys. Lett. 114, 152101 (2019); https://doi.org/10.1063/1.5092221
Submitted: 08 February 2019. Accepted: 26 March 2019. Published Online: 15 April 2019

Hwan Sung Choe, Jiachen Li, Wenjing Zheng, Jaejun Lee, Joonki Suh, Frances I. Allen, Huili Liu, Heon-Jin Choi, Wladek Walukiewicz, Haimei Zheng, and Junqiao Wu

ARTICLES YOU MAY BE INTERESTED IN

Characterization of Lorenz number with Seebeck coefficient measurement
APL Materials 3, 041506 (2015); https://doi.org/10.1063/1.4908244

New horizons in thermoelectric materials: Correlated electrons, organic transport, machine learning, and more
Journal of Applied Physics 125, 180902 (2019); https://doi.org/10.1063/1.5092525

High-performance monolayer MoS$_2$ field-effect transistor with large-scale nitrogen-doped graphene electrodes for Ohmic contact
Applied Physics Letters 115, 012104 (2019); https://doi.org/10.1063/1.5094682
Anomally high electronic thermal conductivity and Lorenz ratio in Bi$_2$Te$_3$ nanoribbons far from the bipolar condition

ABSTRACT

The Lorenz number (L) of a conductor is the ratio between its electronic thermal conductivity and electrical conductivity. It takes the Sommerfeld value of $L_0 = (\pi^2/3)(k_B/e)^2$ in simple, metallically electronic systems where charge and heat are both carried by the same group of quasi-particles that experience elastic scattering. Higher values of L than L_0 are possible in semiconductors where both charge and holes can co-exist at high densities, that is, in bipolar conduction. As a narrow-bandgap semiconductor, Bi$_2$Te$_3$ exhibits $L > L_0$ which has been generally attributed to such bipolar conduction mechanisms. However, in this work, we report that $L > L_0$ is still observed in individual, single-crystal Bi$_2$Te$_3$ nanoribbons even at low temperatures and when degenerately doped, that is, far from the bipolar conduction condition. This discovery calls for different mechanisms to explain the unconventional electronic thermal transport behavior in Bi$_2$Te$_3$.

In conductive materials, thermal conductivity (κ) comprises the contributions from phonons and charge carriers, $\kappa = \kappa_{ph} + \kappa_c$. Although difficult to separate from the phonon contribution (κ_{ph}), the charge carrier contribution (κ_c) is usually proportional to the electrical conductivity (σ) of charge carriers, via a relationship known as the Wiedemann-Franz law, $\kappa_c = L \cdot \sigma \cdot T$. Here, T is the absolute temperature and L is the Lorenz ratio. The value of L is dependent on the charge scattering mechanism, the temperature, and the carrier density. At the degenerate doping limit with dominant elastic carrier scattering, L is not much different from the Sommerfeld value $L_0 = (\pi^2/3)(k_B/e)^2 = 2.44 \times 10^{-8}$ W/K2. Deviation of L from L_0 typically occurs at cryogenic temperatures and arises due to unconventional phases of matter, strong inelastic scattering of quasi-particles, bipolar conduction, or non-quasi-particle transport.

For Bi$_2$Te$_3$ in particular, previous reports have provided evidence of $L > L_0$ but all under the bipolar conduction condition. As a narrow-bandgap semiconductor with a bandgap of only $E_G \approx 0.17$ eV, free electrons and holes can be easily thermally excited across the bandgap, resulting in the coexistence of a considerable density of both free electrons and holes, even in the case of moderate extrinsic doping. In this case, the Fermi level is near the middle of the bandgap or within the bandgap, exhibiting bipolar transport. In the bipolar transport condition, there are two mechanisms that could lead to $L > L_0$. The first mechanism is a classical effect caused by the uni-directional drift of electrons and holes: electrons and holes are thermally generated in a hot region, and both drift along the temperature gradient. Upon reaching the cold region, they recombine and release energy as heat, thereby transporting more thermal energy than in the case of...
The temperature of the furnace was elevated to 520 °C for 12 min, and maintained for 28 min. Afterwards, the furnace was allowed to cool naturally to room temperature. Most of the data shown here were collected from a Bi$_2$Te$_3$ nanoribbon of 62 nm thickness, but experiments have also been performed on other nanoribbons with different thicknesses, and similar results were observed.

Figure 1(a) shows schematically the layered structure of Bi$_2$Te$_3$, where each quintuple atomic sheet is separated from its neighbors by a van der Waals gap. The as-grown Bi$_2$Te$_3$ nanoribbons were evaluated by high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), as shown in Fig. 1(b). These analyses confirm that the nanoribbons are single crystalline, with an atomically clean surface and edges.

In order to study the thermal, electrical, and thermoelectric properties of these nanoribbons, we used suspended micro-pad devices as shown in Fig. 1(c) and schematically in Fig. 1(d). A single nanoribbon was dry transferred such that it bridged the two Si$_3$N$_4$ pads, each of which is suspended from the substrate via long and flexural arms. Pt electrodes were lithographically pre-patterned onto the pads to serve as four-point-probe Pt contacts to the nanoribbon, or as a serpentine heater and a thermometer for thermal measurements. To ensure good thermal and electrical contact of the nanoribbon with the underlying Pt electrodes, we also deposited 100-nm-thick Au electrodes onto the Bi$_2$Te$_3$ nanoribbon using e-beam lithography, and when needed, further clamped the nanoribbon by selective gallium focused ion beam (FIB) induced deposition of Pt at the edge of the contacting area [Fig. 1(c)]. This approach provides firm and ohmic contacts, yet avoids long exposure of the nanoribbon to the FIB which would cause unwanted damage to the material.

To separate the electrical and phonon contributions to the thermal conductivities, we take advantage of the fact that electrical and lattice thermal conductivities of Bi$_2$Te$_3$ respond oppositely to native point defects (atomic vacancies and interstitials). That is, Bi$_2$Te$_3$ ‘s lattice thermal conductivity decreases with defect density as expected for crystalline materials, but its electrical conductivity increases with defect density. The latter is mostly due to the rapid rise in free electron density donated by these electrically active point defects, which overpower the reduction in electron mobility caused by added impurity scattering, as observed for Bi$_2$Te$_3$ thin films and explained in Ref. 18. The narrow width of our nanoribbons prevents Hall effect experiments to be performed on the samples; however, electrical transport behavior of Bi$_2$Te$_3$ in response to ion irradiation has been well characterized using Hall effect measurements of thin films. We introduced these native point defects into our nanoribbons by irradiating the material with focused, 30 keV He$^+$ ions using a Zeiss ORION NanoFab Helium Ion Microscope (HIM). This medium-level energy is chosen to find a balance between (a) maximization of nuclear stopping power (favoring low energy) to create lattice defects and (b) maximization of the ion projected range (favoring high energy) to avoid unwanted doping of nanoribbons with He. The Monte Carlo Stopping and Range of Ions in Matter (SRIM) program was used to simulate the generation of point defects by irradiation. For 30 keV He$^+$ ions incident on Bi$_2$Te$_3$, the projected range estimated by SRIM is ~148 nm, such that >99.9% of the ions travel entirely through a nanoribbon of thickness of 62 nm or less, leaving behind only lattice damage and native point defects that are dependent on the irradiation dose. In our experiments, the nanoribbon channel is uniformly irradiated by rastering the He$^+$ ion beam over the entire suspended region, and the irradiation dose is calculated from the current and rastering parameters implemented. The thermal and electrical measurements were performed under high vacuum (<1 × 10$^{-7}$ Torr) in a cryostat to avoid convective heat loss.
Figures 2(a)–2(c) show the measured total thermal conductivity (κ), electrical conductivity (σ) and Seebeck coefficient (S) for a 62-nm-thick Bi$_2$Te$_3$ nanoribbon for ion irradiation doses ranging from 0 to 7.5×10^{17} ions/cm2 and over the temperature (T) range of 48–373 K. These two-dimensional plots were constructed by interpolating the discrete experimental data points. For completion, the figure of merit ($ZT = S^2\sigma T/\kappa$) is also calculated and shown in Fig. 2(d). A few key effects are seen from these results: (a) Although κ behaves normal as a function of T, the irradiation surprisingly increases κ, from 1.3 W/m-K for the pristine case to a maximum of 1.9 W/m-K for an irradiation dose of 10^{17} ions/cm2 at 298 K, and for higher irradiation doses κ is then reduced. (b) σ rises rapidly with the irradiation dose, from 6.77×10^8 S/m for the pristine case to 1.18×10^9 S/m (by a factor of 1.75) for the maximum dose of 7.5×10^{17} ions/cm2 at 298 K and consistently exhibits metallic behavior along the T axis (i.e., decreasing with T). The maximum change in σ occurs at 48 K, increasing by a factor of 2.3. (c) S is also increased by irradiation, although a slight dip is seen at the dose of 10^{17} ions/cm2.

To correlate the microstructure of the material with these irradiation effects, we carried out additional TEM and SAED analyses on nanoribbons similarly irradiated as those used in the thermal and electrical measurements, as shown in Fig. 3. The low magnification TEM and SAED images were acquired using a 200 kV JEOL 2100 microscope with a LaB$_6$ filament and a Gatan Orius charge coupled device (CCD) camera. HRTEM images were captured using a 200 kV FEI monochromated F20 UT Tecnai microscope with optimal high-resolution performance (Cs = 1.0 mm) and a 2048 x 2048 CCD camera positioned after a Gatan Imaging Filter. An electron current density of about 3000 electrons/Å2/s for the HRTEM imaging and 15 electrons/Å2/s for the low magnification TEM imaging were used. No evidence of electron beam induced sample damage was observed during the imaging. The TEM analysis uncovers that the nanoribbons retain their single-crystallinity after low-dose ion irradiation ($\approx 10^{17}$ ions/cm2), while amorphous regions gradually develop in the nanoribbons when the dose is higher. This dose threshold for amorphization is in good agreement with experimental results from the literature for 30 keV He$^+$ ions incident on silicon and copper. It is intriguing to compare the irradiation behavior of parameters shown in Fig. 3. Figure 4(a) plots the values of κ, σ, S, and ZT at 300 K normalized by their respective pristine values as a function of irradiation dose. The effective total vacancy concentration simulated using the SRIM program is also shown. It can be seen that the dose of $\approx 10^{17}$ ions/cm2 indeed signifies a threshold: beyond this dose, the material is considered to be heavily damaged: κ, σ, and ZT begin to rise rapidly, and κ first peaks and then begins to decrease.

The initial rise in thermal conductivity κ upon irradiation is obviously attributed to the increase in electrical conductivity σ, which increases the electronic component of thermal conductivity κ_e as expected from the Wiedemann-Franz law (the phonon component of κ is reduced. However, subtracting from κ the part of κ_e calculated from the Wiedemann-Franz law using the Sommerfeld value of the Lorenz ratio L_0, the obtained κ_{ph} is still found to increase upon irradiation. For example, the 300 K value of κ_{ph} then increases from 0.77 W/m-K for the pristine case to 1.27 W/m-K for irradiation with 10^{17} ions/cm2, and then starts to drop for higher doses. This is a clear indication that the Lorenz ratio L takes a greater value than L_0 in these nanoribbons, hence the rise in the total κ is due to the rapidly increasing κ_{ph}, overpowering the irradiation-suppressed κ_{ph}. Rather than attempting to accurately determine the value of the Lorenz number L, we estimate the upper and lower bounds of L. Assuming $L = L_0$ for the pristine sample, a lower bound of L for the irradiated samples can be obtained by simply setting κ_{ph} to remain unchanged by irradiation, $\kappa_{ph} = \kappa_{ph}^{pristine} - \kappa^{pristine} T$;
...the Wiedemann-Franz law with...

...energy loss responsible for the production of displaced atoms thus create...

...have calculated that (not shown here) regardless of the...

...can be explained by the theory of bipolar transport, nor by the theory of...

...correlated based on NIEL.19 NIEL values can be extracted from Monte Carlo SRIM simulation, and we calculate D_λ to be up to 2.87×10^{18} MeV/g for doses up to 7.5×10^{17} ions/cm2 under the present irradiation condition. Based on the known relationship between E_F and D_λ in Bi$_2$Te$_3$,18 we can also convert the irradiation dose axis into E_F; this is also shown in Fig. 4(b). We observe that E_F moves deep into the conduction band for increasing irradiation doses...

...can be concluded that L is constantly higher than L_0, especially for low temperatures and high E_F values. For narrow-bandgap semiconductors such as Bi$_2$Te$_3$, both low temperature and high E_F are in opposition to the bipolar conduction condition. In fact, using the law of mass action and known effective masses,20 it can be approximately estimated that at room temperature, the electron density is higher than the hole density by over two orders of magnitude (Fig. 2(b)) is also an indication that these materials are degenerately doped with E_F displaced deeply into the conduction band. We note that the conclusion of $L > L_0$ in the unipolar condition is independent of the L value for the pristine sample. We have calculated that (not shown here) regardless of the L value for the pristine sample ($> L_0$) to $< L_0$), L_{min} of the irradiated sample would grow to $> L_0$ at high doses of irradiation...

...transport, nor by the theory of hydrodynamic transport. We tentatively attribute this to the effect of incoherent transport in a metallic system where the conducting electrons no longer behave as long-lived quasi-particles.21 Assuming the existence of quasi-particles, the mean free path (l) of free electrons in the system could be estimated using the Drude model as $l = \frac{2\pi e^2}{\hbar k_F \sigma}$, where $k_F = \left(\frac{3\pi^2 n}{2}\right)^{1/3}$ is the Fermi wavevector, n is the electron density, and e is the electron charge. The Fermi wavelength (λ_F) is related to the...
electron density as \(\lambda_F = \frac{2\pi}{k_F} = \frac{2\pi}{(3\pi^2 n)^{1/3}} \). Using this model, \(\lambda_F \) of these electrons is estimated to be between 8 nm (pristine case) and 2.4 nm (heavily irradiated case), while the mean free path of quasi-particles is in the range from 13 nm (pristine) to 3 nm (heavily irradiated). Therefore, \(\lambda \) is close and comparable to \(\lambda_F \). Hence, the quasi-particles, if exist, would need to be scattered once within a travel distance on the order of their wavelength, a scenario violating the Heisenberg uncertainty principle. In other words, this metallic system is a “bad metal” since it is beyond the Mott-Ioffe-Regel conductivity limit. The other independent evidence of the absence of quasi-particles is the high value of the dimensionless figure of merit, \(\frac{S^2}{L} \approx 0.02 \), much higher than \(10^{-4} \) for typical metals such as Cu and Al. The high \(\frac{S^2}{L} \) value for a metal is indicative of non-quasi-particle physics, because otherwise, the small factor \(\frac{k_B}{T} \) which usually suppresses inter-particle interactions in a Fermi liquid would equally suppress \(S \), leading to the expectation of very low values of \(\frac{S^2}{L} \). The Wiedemann-Franz law with \(L = L_0 \) is a direct consequence of quasi-particle transport within the relaxation time limit. Without long-lived quasi-particles, charge and heat are instead transported in the system through independent diffusion modes. Hence, the Lorenz ratio of their conductivities \(L \) has no reason to take the value \(L_0 \), and in principle can take any values higher or lower than \(L_0 \) as observed in or proposed for strongly correlated electron materials such as cuprates and vanadium dioxide. However, if this is the case, detailed mechanisms leading to the absence of quasi-particles in \(Bi_2Te_3 \) and the resultant dependence on temperature, doping and irradiation warrants further investigation.

In summary, we discover that the electronic and thermal conductivities in \(Bi_2Te_3 \) nanoribbons are unusually high compared to what is expected from a classical transport system, violating the Wiedemann-Franz law. More importantly, this is observed in a regime where the system is degenerately doped with free electrons, which is far from the bipolar conduction condition as previously reported. The observation rules out existing models invoking bipolar conduction or hydrodynamic transport theory, and is tentatively attributed to non-quasi-particle transport in a strongly correlated metallic system.

This work was supported by the U.S. NSF Grant No. DMR-1608899. J.W. acknowledges support from the Tsinghua-Berkeley Shenzhen Institute (TBSI). The materials preparation was supported by Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2018M3D1A01058536). HZ. thanks the support of the U.S. Department of Energy, Office of Science, Office of Basic Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231 within the KC22ZH program. The helium ion irradiation experiments were performed at the Biomolecular Nanotechnology Center of the Technology Institute for Quantitative Biosciences, UC Berkeley. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES